By N. Elango and S. Parthasarathy

Department of Crystallography and Biophysics,* University of Madras, Guindy Campus, Madras 600 025, India

(Received 19 December 1989; accepted 24 January 1990)

Abstract

The theoretical overall values of different types of R indices have been evaluated as a function of the mean coordinate error (*i.e.* $\langle |\Delta \mathbf{r}| \rangle$) for the atoms in a model and the fractional contribution of the known atoms to the local mean intensity (*i.e.* σ_1^2). The effect of data truncation due to unobserved reflections has also been taken into account. Results for centrosymmetric and non-centrosymmetric crystals containing similar atoms have been obtained in the form of compact tables. Results in these tables can be used to obtain the mean coordinate error $\langle |\Delta \mathbf{r}| \rangle$ for any model from the overall values of the R indices.

1. Introduction

Ramachandran and co-workers derived the joint probability density function (p.d.f.) of the structure factor (F_N , say) of the 'true' structure containing N atoms and the calculated structure factor (F_P^c, say) of an 'assumed model' containing a part P of the atoms $(P \le N)$ with coordinate errors and used it to deduce a number of crystallographic results [for details see the monograph of Srinivasan & Parthasarathy (1976)]. They considered the following two situations: (i) situation I: a centrosymmetric model of a centrosymmetric structure and (ii) situation II: a non-centrosymmetric model of a noncentrosymmetric structure. Later, Swaminathan & Srinivasan (1975) worked out the joint p.d.f. of F_N and F_P^c of a centrosymmetric model of a noncentrosymmetric crystal which is approximately centrosymmetric.

Using the joint p.d.f. of F_N and F_P^c available in the literature, Parthasarathy and co-workers have tabulated the local values of six normalized R indices as a function of the parameter D [see (3) for a definition of D which is a function of both $(\sin \theta)/\lambda$ and the mean coordinate error[†] (*i.e.*, $\langle |\Delta \mathbf{r}| \rangle$) for the atoms in the assumed model] and have suggested a method for computing the theoretical overall values of the normalized R indices for any given value of $\langle |\Delta \mathbf{r}| \rangle$ (Parthasarathy & Velmurugan, 1981; Velmurugan & Parthasarathy, 1981a). They have also worked out the corresponding theoretical results for six types of unnormalized R indices (Velmurugan & Parthasarathy, 1981b). However, so far no convenient tables of overall values of R indices as a function of $\langle |\Delta \mathbf{r}| \rangle$ and σ_1^2 [which represents the fraction of the true structure accounted for by the assumed model, see (2) for the definition of σ_1^2 are available in the literature. Such a table would be very useful in practice since it enables one easily to obtain the mean coordinate error $\langle |\Delta \mathbf{r}| \rangle$ for an assumed model from the observed overall value of any of the R indices. In this paper we shall deal with this problem for situations I and II. The theoretical results for the third situation, namely, a centrosymmetric model of a non-centrosymmetric crystal which is approximately centrosymmetric will be dealt with separately.

It is possible to calculate R indices using directly either the normalized structure-factor magnitude variables or the normalized intensity variables instead of $|F_N|$ and $|F_P^c|$. This enables us to define six other types of normalized R indices (see Parthasarathy, 1987) and these have not been considered in the earlier papers. We shall therefore obtain the theoretical values of eighteen different types of R indices as a function of $\langle |\Delta \mathbf{r}| \rangle$ and σ_1^2 in the form of compact tables.

In this paper we shall follow the notation and nomenclature used by Parthasarathy (1987) with some minor modifications. We shall denote R indices calculated using truncated data (*i.e.* data for which the reflections which are too weak to be observed are omitted) with a subscript t to the variable used for calculating the R index. For example, $\bar{R}_1(F_t)^{\dagger}$ is the overall value of the normalized conventional R index based on F computed using data from which the reflections with $|F_N| < F_t$ (= the threshold value for structure-factor magnitudes) are excluded.

2. Derivation of the theoretical expressions for the overall values of R indices

Consider a crystal (space group P1 or $P\overline{1}$) containing a large number (N, say) of similar atoms in the unit cell. During any stage of structure analysis, let the

^{*} Contribution No. 749.

 $^{^{\}dagger}\langle |\Delta \mathbf{r}| \rangle = (1/P) \sum_{j=1}^{P} |\Delta \mathbf{r}|$. For convenience we shall hereafter refer to $\langle |\Delta \mathbf{r}| \rangle$ as the mean error in the atomic positions for the model.

[†] This was denoted earlier by the more cumbersome symbol $[\bar{R}_1(F)]_r$ (see Parthasarathy & Velmurugan, 1981).

^{© 1990} International Union of Crystallography

proposed model consist of $P(\langle N)$ atoms. Let $\langle |\Delta \mathbf{r}| \rangle$ be the mean error in the positions of the atoms in the model. Let $|F_N|$ be the structure-factor magnitude of a reflection H(=hkl) for the true structure and let $|F_P^c|$ be the corresponding calculated value for the model. Let y_N and y_P^c be the normalized structure-amplitude variables associated with $|F_N|$ and $|F_P^c|$, respectively. That is,

$$y_{N} = |F_{N}|/\langle |F_{N}|^{2}\rangle^{1/2} = |F_{N}|/\sigma_{N},$$

$$y_{P}^{c} = |F_{P}^{c}|/\langle |F_{P}^{c}|^{2}\rangle^{1/2} = |F_{P}^{c}|/\sigma_{P}^{c},$$
(1)

where $\sigma_N^2 = \langle |F_N|^2 \rangle$ and $(\sigma_P^c)^2 = \langle |F_P^c|^2 \rangle$. Let σ_1^2 be the fractional contribution to the local mean intensity from the *P* atoms of the model.

$$\sigma_1^2 = \langle |F_P^c|^2 \rangle / \langle |F_N|^2 \rangle. \tag{2}$$

Following Luzzati (1952), we shall define D as

$$D = \langle \cos 2\pi \mathbf{H} \cdot \Delta \mathbf{r} \rangle. \tag{3}$$

Assuming $\Delta \mathbf{r}$ to follow a three-dimensional Gaussian distribution, Luzzati (1952) showed that

$$D = \exp\left[-(\pi^3/4)H^2\langle|\Delta \mathbf{r}|\rangle^2\right].$$
 (4)

Following Srinivasan & Ramachandran (1966), we define σ_A and σ_B as

$$\sigma_A = \sigma_1 D, \qquad \sigma_B = (1 - \sigma_A^2)^{1/2}.$$
 (5)

Let F_t be the threshold value of $|F_N|$ and let y_t be the corresponding threshold value of y_N .

The notation and definition of various R indices are given in Table 1. The procedure employed by Parthasarathy & Velmurugan (1981) for obtaining the theoretical expressions for the overall values of Rindices consists of the following steps: (i) Rewrite the defining equation for the overall value of R^* in term of the normalized variables y_N and y_P^c . (ii) Partition the reciprocal space into sufficiently thin shells so that the atomic scattering factor corresponding to various reflections in any given shell may be treated as constant. (iii) Write the sum over all the observed reflections as a summation over those reflections which lie in a given shell and then sum over the contributions from the various shells. The final expressions for the various R indices as obtained in the earlier papers (Parthasarathy & Velmurugan, 1981; Velmurugan & Parthasarathy, 1981a, b) are summarized in the fourth column of Table 1. The procedure suggested in these papers for evaluating the theoretical overall values are inconvenient owing to the presence of the crystal-dependent quantity n_s (=the number of observed reflections in the sth shell). This difficulty may be overcome by a simple procedure consisting of dividing the reciprocal space into equi-volume shells instead of shells of arbitrary volumes. We shall consider this aspect presently.

Suppose that we partition the region $0 \le H \le H_{max}$ of the reciprocal space^{*} into ν thin shells of equal volume. We may then take n_s to be practically the same in the various shells so that we can cancel out n_s from the numerator and denominator of the expression of any given R index. The final expressions thus obtained for the overall values of the R indices are given in the fifth column of Table 1.

3. Method of computing the theoretical overall values of *R* indices

It is seen from the theoretical expression for \bar{R} given in Table 1 that the computation of the theoretical overall value of R for a given model would involve the following steps: (i) Partitioning the reciprocal space into ν equi-volume shells and finding the mean value of $(\sin \theta)/\lambda$ for each shell. Let \bar{s}_i be the mean value of $(\sin \theta)/\lambda$ for the *i*th shell $(i = 1, 2, ..., \nu)$. (ii) Obtaining the scattering factor for an average atom for the structure. (iii) Calculating the local values of the R index and the weights corresponding to the various shells (i.e. corresponding to the values $\bar{s}_1, \bar{s}_2, \ldots, \bar{s}_{\nu}$). (iv) Computing the overall value of the R index by making use of the values obtained in steps (i) to (iii) in the appropriate equation for the overall value of the R index given in Table 1. In §§ 3.1 to 3.3 we shall consider the computational aspects involved in steps (i)-(iii).

3.1. An algorithm for partitioning the region $H_{min} \le H \le H_{max}$ of the reciprocal space into ν equi-volume shells

The radii of the boundaries of the spherical shells and the mean values of $(\sin \theta)/\lambda$ corresponding to the various shells when the region of reciprocal space $H_{\min} \le H \le H_{\max}$ is partitioned into ν equi-volume shells can be obtained as follows.

Let V_0 be the total volume of the region $H_{\min} \le H \le H_{\max}$ of the reciprocal space so that

$$V_0 = \frac{4}{3}\pi (H_{\rm max}^3 - H_{\rm min}^3).$$
 (6)

If this region is partitioned into ν shells of equal volume, then the volume of each shell is V_0/ν . If H_i and H_{i+1} are respectively the inner and outer radii of the *i*th shell, then the volume of the *i*th shell is $\frac{4}{3}\pi(H_{i+1}^3 - H_i^3)$ and for our situation this volume must be equal to V_0/ν . That is,

$$\frac{4}{3}\pi(H_{i+1}^3 - H_i^3) = \frac{4}{3}\pi(H_{\max}^3 - H_{\min}^3)/\nu,$$

which can be rewritten as

$$H_{i+1} = [H_i^3 + (H_{\max}^3 - H_{\min}^3)/\nu]^{1/3},$$

$$i = 1, 2, \dots, \nu - 1. \quad (7)$$

Here the inner radius of the innermost shell (called

^{*} We use R and \overline{R} to denote, respectively, a local value and the overall value of any one of the R indices.

^{*} Since $H = 2(\sin \theta)/\lambda = 2S$, this partitioning is equivalent to partitioning the interval $0 \le S \le S_{max}$ into ν sub-intervals.

				Final expre	ssion	Expression for local value
No. Name of index	I	Notation	Definition	Earlier	Present	variables y_N and y_P^c
1. Normalized conventional R index b	ased on F	$\bar{R}_1(F_t)$	$\frac{\sum^{t} F_{N} - F_{P}^{c} /\sigma_{1} }{\sum^{t} F_{N} }$	$\frac{\sum_s f_s n_s [R_1(y_t)]_s}{\sum_s f_s n_s}$	$\frac{\sum_s f_s[R_1(y_t)]_s}{\sum_s f_s}$	$[R_1(y_i)]_s = \frac{\langle y_N - y_P^c \rangle_s^c}{\langle y_N \rangle_s^c}$
2. Normalized conventional R index bi	ased on y	$\vec{R}_1(y_t)$	$\frac{\sum^{t} y_{N} - y_{P} }{\sum^{t} y_{N}}$	$\frac{\sum_s n_s[R_1(y_t)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}[R_1(y_t)]_s$	$[R_1(y_i)]_s = \frac{\langle y_N - y_P^c \rangle_s^t}{\langle y_N \rangle_s^t}$
3. Normalized conventional R index b:	ased on I	$ar{R}_1(I_t)$	$\frac{\sum^{I} I_{N} - I_{P}^{c}/\sigma_{1}^{2} }{\sum^{I} I_{N}}$	$\frac{\sum_s f_s^2 n_s [R_1(z_i)]_s}{\sum_s f_s^2 n_s}$	$\frac{\sum_s f_s^2 [R_1(z_i)]_s}{\sum_s f_s^2}$	$[R_1(z_r)]_s = \frac{\langle y_N^2 - (y_P^c)^2 \rangle_s}{\langle y_N^2 \rangle_s^s}$
4. Normalized conventional R index b	ased on z	$ar{R}_1(z_i)$	$\frac{\sum^{t} z_{N} - z_{P}^{c} }{\sum^{t} z_{N}}$	$\frac{\sum_s n_s[R_1(z_t)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s} [R_1(z_t)]_s$	$[R_1(z_1)]_s = \frac{\langle y_N^2 - (y_P^c)^2 \rangle_s^t}{\langle y_2^2 \rangle_s^t}$
5. Normalized Booth-type R index bas	sed on F	$_{B}\tilde{R}_{1}(F_{t})$	$\frac{\sum^{t} \left(F_{N} - F_{P}^{e} / \sigma_{1} \right)^{2}}{\sum^{t} F_{N} ^{2}}$	$\frac{\sum_s f_s^2 n_s [BR_1(y_t)]_s}{\sum_s f_s^2 n_s}$	$\frac{\sum_s f_s^2 [BR_1(y_t)]_s}{\sum_s f_s^2}$	$[_{B}R_{1}(y_{t})]_{s} = \frac{\langle (y_{N} - y_{P}^{c})^{2} \rangle_{s}}{\langle y_{N} \rangle_{s}^{t}}$
6. Normalized Booth-type R index bas	sed on y	${}_Bar{R}_1(y_t)$	$\frac{\sum^{t} (y_{N} - y_{p}^{c})^{2}}{\sum^{t} y_{N}^{2}}$	$\frac{\sum_s n_s[_BR_1(y_t)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}\left[{}_{B}R_{1}(y_{t}) ight] _{s}$	$[_{B}R_{1}(y_{t})]_{s} = \frac{\langle (y_{N} - y_{P}^{c})^{2} \rangle_{s}^{t}}{\langle y_{2}^{2} \rangle_{t}^{t}}$
7. Normalized Booth-type R index bas	sed on I	${}_{B}ar{R}_{1}(I_{t})$	$\frac{\sum_{i}^{L} (I_{N} - I_{P}^{2}/\sigma_{1}^{2})^{2}}{\sum_{i} I_{N}^{2}}$	$\frac{\sum_{s} f_{s}^{4} n_{s} [BR_{1}(z_{t})]_{s}}{\sum_{s} f_{s}^{4} n_{s}}$	$\frac{\sum_s f_s^4 [BR_1(z_t)]_s}{\sum_s f_s^4}$	$[_{B}R_{1}(z_{r})]_{s} = \frac{\langle [y_{N}^{2}, -(y_{P}^{c})^{2}]^{2} \rangle_{s}}{\langle y_{N}^{A} \rangle_{s}^{2}}$
8. Normalized Booth-type R index bas	sed on z	${}_Bar{R}_1(z_t)$	$\frac{\sum^{t} (z_{n} - z_{p}^{c})^{2}}{\sum^{t} z_{2}^{2}}$	$\frac{\sum_s n_s[BR_1(z_i)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}\left[{}_{B}R_{1}(z_{t}) ight] _{s}$	$[_{B}R_{1}(z_{t})]_{s} = \frac{\langle [y_{N}^{2} - (y_{P}^{c})^{2}]^{2} \rangle_{s}^{t}}{\langle y_{N}^{A} \rangle_{s}^{t}}$
9. Normalized fractional-type R index	based on F	$ ilde{R}_1^f(F_i)$	$\frac{1}{N} \Sigma^{t} \left \frac{ F_{N} - F_{P}^{c} /\sigma_{1}}{\frac{1}{2}(F_{N} + F_{P}^{c} /\sigma_{1})} \right $	$\frac{\sum_s n_s[R_1(y_i)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}\left[R_{1}^{f}(y_{t}) ight]_{s}$	$[R_1^f(y_t)]_s = 2\left\langle \left \frac{y_N - y_P^c}{y_N + y_P^c} \right \right\rangle_s$
10. Normalized fractional-type R index	based on y	$ar{R}_1^f(y_t)$	$\frac{1}{N}\sum^{t}\left \frac{y_{N}-y_{P}^{c}}{\frac{1}{2}(y_{N}+y_{P}^{c})}\right $	$\frac{\sum_s n_s[R^f_1(y_t)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}\left[R^{f}_{1}(y_{t}) ight]_{s}$	$[R_1^f(y_i)]_s = 2\left\langle \left \frac{y_N - y_P^c}{y_N + y_P^c} \right \right\rangle_s$
11. Normalized fractional-type R index	based on I	$ar{R}_1^f(I_t)$	$\frac{1}{N}\Sigma^{t}\left \frac{I_{N}-I_{P}^{c}/\sigma_{1}^{2}}{\frac{1}{2}(I_{N}+I_{P}^{c}/\sigma_{1}^{2})}\right $	$\frac{\sum_s n_s[R\{(z_i)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}\left[R_{1}^{f}(z_{t}) ight]_{s}$	$[R_{1}^{f}(z_{1})]_{s} = 2\left\langle \left \frac{y_{N}^{2} - (y_{F}^{*})^{2}}{y_{N}^{2} + (y_{F}^{*})^{2}} \right \right\rangle_{s}^{t}$
12. Normalized fractional-type R index	based on <i>z</i>	$\bar{R}_{1}^{f}(z_{t})$	$\frac{1}{N}\sum^{t} \left \frac{z_{N}-z_{P}^{c}}{\frac{1}{2}(z_{N}+z_{P}^{c})} \right $	$\frac{\sum_s n_s[R^f_1(z_t)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}\left[R^{f}_{1}(z_{t}) ight]_{s}$	$[R_{1}^{f}(z_{t})]_{s} = 2\left\langle \left \frac{y_{N}^{2} - (y_{P}^{c})^{2}}{y_{N}^{2} + (y_{P}^{c})^{2}} \right \right\rangle_{s}^{t}$
13. Unnormalized conventional R index	x based on F	$\bar{R}(F_t)$	$\frac{\sum^{t} F_{N} - F_{P}^{c} }{\sum^{t} F_{N} }$	$\frac{\sum_{sf_{s}n_{s}}[R(y_{t})]_{s}}{\sum_{s}f_{s}n_{s}}$	$\frac{\sum_s f_s[R(y_t)]_s}{\sum_s f_s}$	$\left[R(y_t)\right]_s = \frac{\langle [y_N - \sigma_1 y_P^c] \rangle_s^t}{\langle y_N \rangle_s^t}$
14. Unnormalized conventional R index	x based on <i>I</i>	$ar{R}(I_t)$	$\frac{\sum_{i} I_{N} - I_{P}^{c} }{\sum_{i} I_{N} }$	$\frac{\sum_s f_s^2 n_s [R(z_t)]_s}{\sum_s f_s^2 n_s}$	$\frac{\sum_s f_s^2 [R(z_t)]_s}{\sum_s f_s^2}$	$[R(z_t)]_s = \frac{\langle y_N^2 - \sigma_t^2(y_P^c)^2 \rangle_s}{\langle v_N^2 \rangle_t^2}$
15. Unnormalized Booth-type R index t	based on F	$_{B}ar{R}(F_{t})$	$\frac{\sum^{t} \left(F_{N} - F_{P}^{c} \right)^{2}}{\sum^{t} F_{N} ^{2}}$	$\frac{\sum_s f_s^2 n_s [BR(y_t)]_s}{\sum_s f_s^2 n_s}$	$\frac{\sum_s f_s^2 [_B R(y_t)]_s}{\sum_s f_s^2}$	$\left[_{B}R(y_{t})\right]_{s} = \frac{\langle (y_{N} - \sigma_{1}y_{t}^{c})^{2} \rangle_{s}}{\langle y_{2}^{2} \rangle_{s}^{2}}$
16. Unnormalized Booth-type R index t	based on I	${}_{B}ar{R}(I_{t})$	$\frac{\sum^{t} (I_{N} - I_{P}^{c})^{2}}{\sum^{t} I_{N}^{2}}$	$\frac{\sum_{s} \int_{s}^{4} n_{s} \left[BR(z_{t}) \right]_{s}}{\sum_{s} \int_{s}^{4} n_{s}}$	$\frac{\sum_s f_s^4[_BR(z_t)]_s}{\sum_s f_s^4}$	$[_{B}R(z_{t})]_{s} = \frac{\langle [y_{N}^{2} - \sigma_{1}^{2}(y_{F}^{e})^{2}]^{2} \rangle_{s}^{t}}{\langle y_{N}^{e} \rangle_{s}^{t}}$
17. Unnormalized fractional-type R ind	lex based on F	$\bar{R}^{f}(F_{t})$	$\frac{1}{N}\sum^{t} \left \frac{ F_{N} - F_{P}^{c} }{\frac{1}{2}(F_{N} + F_{P}^{c})} \right $	$\frac{\sum_s n_s[R^f(y_t)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s} [R^{f}(y_{t})]_{s}$	$[R^{f}(y_{i})]_{s} = 2\left\langle \left \frac{y_{N} - \sigma_{1}y_{P}^{c}}{y_{N} + \sigma_{1}y_{P}^{c}} \right \right\rangle_{s}$
18. Unnormalized fractional-type R ind	dex based on I	$\bar{R}^{f}(I_{t})$	$\frac{1}{N}\Sigma' \left \frac{I_N - I_P^c}{\frac{1}{2}(I_N + I_P^c)} \right $	$\frac{\sum_s n_s[R^f(z_t)]_s}{\sum_s n_s}$	$(1/\nu)\sum_{s}[R^{f}(z_{r})]_{s}$	$\left[R^{f}(z_{t})\right]_{s} = 2\left\langle \left \frac{y_{N}^{2} - \sigma_{1}^{2}(y_{F}^{c})^{2}}{y_{N}^{2} + \sigma_{1}^{2}(y_{F}^{c})^{2}}\right \right\rangle_{s}$
Note: \sum^{i} stands for the summation ove $\tilde{R}_{1}^{f}(y_{t}) = \tilde{R}_{1}^{f}(F_{t})$ and $\tilde{R}_{1}^{f}(z_{t}) = \tilde{R}_{1}^{f}(I_{t})$ and	er the N observ d hence we shall	ed reflections I hereafter con	in the data. The superscript t to the sider only $\overline{R}_1^f(F_t)$ and $\overline{R}_1^f(I_t)$.	e summation symbol denotes that	the truncated data are invol-	ved in the summation. Also note that

Table 1. Notation, definition and the theoretical expressions for the overall values of various types of R indices for truncated data

shell 1) is given by $H_1 = H_{\min}$. H_{\max} is the outer radius of the outermost (*i.e.* ν th) shell.

Shifting the index from i to i-1, we can rewrite (7) as

$$H_i = \left[\left(H_{\max}^3 - H_{\min}^3 \right) / \nu + H_{i-1}^3 \right]^{1/3}, \quad i = 2, 3, \dots, \nu$$
(8)

with $H_1 = H_{\min}$.

With the results of Parthasarathy & Parthasarathi (1975), the mean value of $(\sin \theta)/\lambda$ corresponding to the *i*th shell for which $H_{i-1} \le H \le H_i$ can be shown to be

$$\bar{H}_i = 3(H_i^4 - H_{i-1}^4) / [4(H_i^3 - H_{i-1}^3)].$$
(9)

Since $H = 2(\sin \theta)/\lambda$, we can write the mean value of $(\sin \theta)/\lambda$ for the *i*th shell as

$$\bar{s}_i = 3(S_i^4 - S_{i-1}^4) / [4(S_i^3 - S_{i-1}^3)].$$
(10)

3.2. Atomic scattering factor of an average atom for the structure

The atomic scattering factor f needed in the theoretical expressions for the overall value of R for any given model may be taken to be that of an average atom in the structure. Thus, if α_C , α_N and α_O are the fractional number of C, N and O atoms in the asymmetric unit then we may write

$$\bar{f} = (\alpha_{\rm C} f_{\rm C}^0 + \alpha_{\rm N} f_{\rm N}^0 + \alpha_{\rm O} f_{\rm O}^0) \exp\left[-B(\sin^2\theta)/\lambda^2\right],$$
(11)

where B is the average isotropic temperature factor for the atoms in the asymmetric unit and f_C^0 , f_N^0 and f_O^0 are the atomic scattering factors of static C, N and O atoms. The quantities α_C , α_N and α_O would vary from structure to structure. However, for the purpose of obtaining convenient reference tables for use, the following strategy was used. Volumes B44 and C44 of *Acta Crystallographica* were surveyed to pick out all light-atom structures (*i.e.* structures containing* C, N and O atoms) published during 1988. If Δ_{ij} is the fractional number of atoms of type *i* (*i* is 1 for C, 2 for N and 3 for O, say) in compound *j*, the scattering factor \overline{f} of the average atom was taken to be

$$\bar{f} = (\alpha_{\rm C} f_{\rm C}^0 + \alpha_{\rm N} f_{\rm N}^0 + \alpha_{\rm O} f_{\rm O}^0) \exp\left[-B(\sin^2\theta)/\lambda^2\right],$$
(12)

where the weights $\alpha_{\rm C}$, $\alpha_{\rm N}$ and $\alpha_{\rm O}$ are given by

$$\alpha_i = \left(\sum_{j=1}^m \Delta_{ij}\right) / m, \quad i = C, N \text{ and } O.$$
(13)

Here *m* is the total number of compounds studied (*i.e.* 319 in the present case). The values obtained by the above procedure are $\alpha_{\rm C} = 0.739$, $\alpha_{\rm N} = 0.086$ and $\alpha_{\rm O} = 0.175$. Taking *B* to be 3 Å² we can write the

scattering factor for the average atom to be

$$\bar{f} = (0.739 f_{\rm C}^0 + 0.086 f_{\rm N}^0 + 0.175 f_{\rm O}^0) \\ \times \exp[-3(\sin^2\theta)/\lambda^2].$$
(14)

The quantity \overline{f} obtained in (14) was used in calculating the theoretical overall values of R indices reported in Tables 2 and 3.

3.3. Method of computing the local value of R corresponding to given values of $\langle |\Delta \mathbf{r}| \rangle$, σ_1^2 and $(\sin \theta)/\lambda$

The local value of any normalized R index is known to be a function of σ_A (see Parathasarthy & Velmurugan, 1981; Velmurugan & Parthasarathy, 1981*a*). The local value of any unnormalized R index is known to depend explicitly on σ_1 and D (Velmurugan & Parthasarathy, 1981*b*).

It is seen from the last column of Table 1 that the local value of any R index has the form

$$R = \frac{\langle g(y_N, y_P^c) \rangle_s^t}{\langle y_N^n \rangle_s^t},$$
 (15)

where $g(y_N, y_P^c)$ is a function of y_N and y_P^c and n = 0, 1, 2 and 4 as the case may be. The quantity $\langle g(y_N, y_P^c) \rangle_s^c$ for any given σ_1 and D may be evaluated from

$$\langle g(y_N, y_P^c) \rangle_s^t = \int_0^\infty \int_{y_t}^\infty g(y_N, y_P^c) P_t(y_N, y_P^c) \, \mathrm{d}y_N \, \mathrm{d}y_P^c,$$
(16)

where $P_t(y_N, y_P^c)$ is the joint p.d.f. of y_N and y_P^c for the truncated distribution. The double integral in (16) is to be evaluated numerically.*

The joint p.d.f. of y_N and y_P^c for the truncated data is known to be

$$P_{t}(y_{N}, y_{P}^{c}) = \frac{2}{\pi \sigma_{B} \beta_{C}} \exp\left[-\frac{y_{N}^{2} + (y_{P}^{c})^{2}}{2 \sigma_{B}^{2}}\right] \\ \times \cosh\left[\frac{\sigma_{A} y_{N} y_{P}^{c}}{\sigma_{B}^{2}}\right]$$
(17)

for situation I (Parthasarathy & Velmurugan, 1981) and

$$P_{t}(y_{N}, y_{P}^{c}) = \frac{4y_{N}y_{P}^{c}}{\sigma_{B}^{2}\beta_{NC}} \exp\left[-\frac{y_{N}^{2} + (y_{P}^{c})^{2}}{\sigma_{B}^{2}}\right] \times I_{0}\left[\frac{2\sigma_{A}y_{N}y_{P}^{c}}{\sigma_{B}^{2}}\right]$$
(18)

for situation II (Velmurugan & Parthasarathy, 1981*a*). β_C and β_{NC} are defined as

$$\beta_C = \operatorname{erfc}\left(y_t/2^{1/2}\right) \tag{19}$$

* The numerical tables in Velmurugan & Parthasarathy (1981*a*, *b*) and Parthasarathy & Velmurugan (1981) could be used to evaluate $\langle g(y_N, y_P^c) \rangle$ using interpolation techniques. However, since the present method of directly carrying out the double integral in (16) yields more accurate results, we have evaluated $\langle g(y_N, y_P^c) \rangle$ by numerical integration.

^{*} We shall neglect H atoms in our consideration...

Table 2.	Theoretical overal	values of R	indices (×1	1000) as a	function o	of $\langle \Delta \mathbf{r} \rangle$	(Å) for	different	values	of y_t
		correspond	ling to $\sigma_1^2 =$	1.00: cent	trosymmetr	ric case				

Index	y, ⟨ Δr ⟩	0.00	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.35	0.40
$\bar{R}_1(F_t)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	11 46 42 31 36	49 82 79 74 61	97 126 120 112 94	146 170 159 148 129	193 212 195 182 163	238 250 230 215 196	281 286 262 246 226	321 319 293 275 255	359 350 321 302 282	395 379 348 327 308	428 406 373 351 331	459 432 396 372 353	488 455 417 392 373	515 477 437 411 391	539 497 455 428 408	593 541 494 464 443	636 576 526 494 472
$\bar{R}_1(y_t)$	0.00 U.15 0.30 0.45 0.60	0 0 0 0	15 51 47 38 40	63 95 92 87 69	121 148 140 130 110	177 199 184 171 151	231 245 225 209 191	282 288 263 246 227	330 327 299 281 262	374 363 333 313 293	416 397 364 342 323	454 428 393 370 350	490 456 419 394 375	522 483 443 417 397	552 507 465 438 418	580 530 485 456 436	604 550 503 473 452	657 593 541 508 486	697 626 570 535 512
$\bar{R}_1(I_r)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	3 55 54 41 47	24 89 95 102 78	63 136 147 156 119	110 189 198 202 166	161 244 246 245 213	214 296 292 287 258	267 346 336 327 301	320 394 379 365 342	371 439 419 402 380	420 481 457 437 415	468 522 493 470 449	514 560 526 501 480	557 596 558 531 509	598 630 588 559 535	637 662 617 585 560	726 734 681 644 614	803 795 735 693 659
$ar{R}_1(z_t)$	0.00 0.15 0.30 0.45 0.60	() 0 0 0 0	7 69 66 69 59	51 122 138 152 106	120 203 217 215 178	196 286 283 274 251	274 362 344 333 315	351 430 404 389 373	427 492 461 443 425	498 550 515 493 474	565 603 565 540 518	628 654 612 583 559	687 701 655 622 595	742 744 695 658 629	792 785 731 691 658	838 822 764 720 685	881 856 794 746 709	971 928 856 801 757	1042 983 903 841 793
$_{B}\bar{R}_{1}(F_{t})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	1 2 2 1 1	5 6 6 4	13 15 14 12 10	25 27 24 22 18	40 40 36 33 29	57 56 50 46 41	76 73 66 54	97 91 82 75 69	119 111 100 91 84	142 130 118 108 99	166 151 136 124 115	190 171 154 141 131	214 191 172 158 147	238 211 190 174 162	261 231 207 190 178	317 278 249 228 213	368 321 287 262 245
$_{\boldsymbol{B}}\bar{\boldsymbol{R}}_{1}(\boldsymbol{y}_{t})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	1 3 3 3 2	10 12 11 11 8	26 28 25 22 19	47 49 43 39 35	74 72 64 58 53	104 98 88 80 73	137 126 114 104 96	172 155 141 129 119	207 186 168 155 144	244 216 196 180 168	280 247 223 205 191	315 277 249 229 214	349 306 275 252 236	382 333 299 274 257	414 360 321 295 276	483 418 371 339 317	540 465 411 375 351
$_{B}\tilde{R}_{1}(I_{t})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	0 1 1 1	1 4 6 3	3 9 11 13 8	8 17 20 22 16	15 29 32 31 27	26 43 46 43 40	39 60 61 56 56	55 79 77 71 73	73 99 95 88 91	94 121 113 106 110	116 144 133 125 131	139 168 153 146 151	164 192 175 167 172	190 217 197 190 193	217 242 221 213 214	287 305 281 271 266	360 369 344 329 319
$_{B}\bar{R}_{1}(z_{t})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	0 3 7 3	6 15 22 22 15	24 44 47 41 43	53 84 75 70 78	94 128 112 109 115	145 174 156 153 156	202 224 207 201 200	262 278 262 252 248	326 334 318 305 297	391 393 375 358 346	456 452 431 411 394	521 511 486 461 441	585 569 538 509 485	647 624 588 554 526	706 677 635 597 564	839 795 738 688 647	948 892 821 760 711
$\bar{R}_{1}^{f}(F_{i})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	44 81 66 45 50	140 157 131 104 88	226 230 195 164 136	298 292 255 220 189	359 346 309 274 241	411 392 356 324 291	457 433 398 368 337	498 470 436 409 380	533 502 469 444 419	565 531 499 476 455	592 557 525 505 487	617 581 549 530 515	639 601 570 553 541	658 620 589 573 564	676 637 605 591 584	711 671 640 628 625	737 696 665 654 655
$\bar{R}_1^f(I_t)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0 0	80 158 131 89 99	248 294 252 204 173	390 418 363 312 264	504 520 461 407 355	597 603 545 493 441	675 674 617 568 518	740 734 680 634 588	797 786 734 692 650	845 831 781 743 705	887 871 823 787 754	924 906 859 826 798	956 937 891 861 836	984 964 919 891 869	1008 988 944 917 899	1030 1009 965 940 925	1073 1051 1009 987 977	1104 1082 1041 1021 1015

and

$$\beta_{NC} = \exp\left(y_t^2\right). \tag{20}$$

The quantity $\langle y_N^n \rangle_s^t$ may be evaluated from

$$\langle y_N^n \rangle_s^t = \int_{y_t}^{\infty} y_N^n P_t(y_N) \, \mathrm{d}y_N, \qquad (21)$$

where $P_t(y_N)$ is the probability density function of y_N for the truncated data. $P_t(y_N)$ is known to be (Ponnuswamy & Parthasarathy, 1977)

$$P_t(y_N) = (2/\pi)^{1/2} \exp(-y_N^2/2)/\beta_C \qquad (22)$$

for a centrosymmetric crystal and

$$P_t(y_N) = 2y_N \exp(-y_N^2) / \beta_{NC}$$
(23)

for a non-centrosymmetric crystal. The integral in (21) was also evaluated numerically.

The above procedure was used to compute the theoretical overall values of the various R indices as a function of $\langle |\Delta \mathbf{r}| \rangle$ and σ_1^2 corresponding to $y_t = 0.0$, 0.15, 0.30, 0.45 and 0.60. Since the case for which $\sigma_1^2 = 1$ (*i.e.* P = N) is the most useful one, the results are given in Tables 2 and 3 only for this case.* To obtain the results in Tables 2 and 3, ν and s_{max} were taken as 24 and 0.5 Å⁻¹, respectively. It may

^{*} The tables of values corresponding to $\sigma_1^2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8$ and 0.9 have also been computed but these are not published. These can be obtained from Parthasarathy on request.

MEAN ERROR IN ATOMIC POSITIONS

Table 3.	Theoretical overall values of R indices (×1000) as a function of $\langle \Delta \mathbf{r} \rangle$ (Å) for different values of	y _t
	corresponding to $\sigma_1^- = 1.00$: non-centrosymmetric case	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$ \bar{\kappa}_1(r) = \begin{pmatrix} 0 & 0 & 0 & 2 & 17 & 45 & 78 & 111 & 143 & 174 & 203 & 231 & 227 & 281 & 304 & 322 & 343 & 363 & 403 \\ 0 & 15 & 0 & 37 & 66 & 87 & 114 & 144 & 166 & 195 & 217 & 240 & 262 & 282 & 301 & 319 & 335 & 350 & 364 \\ 0 & .45 & 0 & 21 & 50 & 01 & 110 & 137 & 163 & 164 & 210 & 211 & 251 & 264 & 266 & 302 & 317 & 331 & 360 \\ 0 & .0 & 0 & 0 & 35 & 55 & 75 & 99 & 123 & 147 & 171 & 193 & 213 & 232 & 250 & 267 & 283 & 297 & 310 & 336 \\ \bar{\kappa}_1(r) & 0 & 0 & 0 & 2 & 24 & 259 & 96 & 129 & 126 & 126 & 216 & 216 & 310 & 314 & 302 & 419 & 443 \\ 0 & .15 & 0 & 42 & 66 & 100 & 158 & 174 & 207 & 238 & 247 & 274 & 193 & 343 & 344 & 302 & 419 & 443 \\ 0 & .15 & 0 & 42 & 66 & 100 & 158 & 114 & 141 & 171 & 193 & 213 & 234 & 304 & 584 & 302 & 419 & 443 \\ 0 & .0 & 0 & 0 & 0 & 40 & 66 & 85 & 114 & 143 & 171 & 197 & 222 & 249 & 204 & 303 & 321 & 338 & 357 & 356 & 356 \\ 0 & .60 & 0 & 40 & 66 & 85 & 114 & 143 & 171 & 197 & 222 & 244 & 265 & 248 & 300 & 321 & 338 & 357 & 357 & 357 & 357 & 357 & 357 & 357 & 358 & 357 & 356 & 358 & 357 & 356 & 359 & 428 & 477 & 486 & 510 & 539 \\ 0 & .60 & 0 & 40 & 66 & 85 & 114 & 143 & 171 & 197 & 222 & 244 & 265 & 288 & 344 & 496 & 449 & 480 & 551 & 357 & 357 & 357 & 357 & 357 & 358 & 35$	Index	y¦(∆r)	0.00	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.35	0.40
$ \begin{split} \vec{\kappa}_1(y) & 0.00 & 0 & 2 & 24 & 25 & 99 & 99 & 318 & 175 & 209 & 242 & 277 & 301 & 327 & 351 & 373 & 393 & 411 & 449 \\ 0.15 & 0.30 & 0 & 40 & 69 & 99 & 138 & 174 & 207 & 238 & 257 & 259 & 319 & 340 & 364 & 402 & 419 & 454 \\ 0.45 & 0 & 25 & 99 & 61 & 138 & 174 & 120 & 222 & 249 & 274 & 298 & 319 & 340 & 358 & 375 & 393 & 411 & 449 \\ 0.66 & 0 & 40 & 60 & 85 & 114 & 143 & 171 & 197 & 222 & 244 & 265 & 284 & 301 & 317 & 332 & 345 & 372 \\ \vec{\kappa}_1(I) & 0.00 & 0 & 0 & 9 & 33 & 67 & 105 & 146 & 188 & 229 & 265 & 308 & 346 & 402 & 449 & 460 & 551 \\ 0.15 & 0 & 50 & 81 & 110 & 146 & 186 & 227 & 267 & 306 & 344 & 380 & 416 & 449 & 460 & 551 \\ 0.30 & 0 & 59 & 86 & 116 & 152 & 189 & 226 & 266 & 293 & 332 & 365 & 394 & 421 & 477 & 478 & 546 \\ 0.45 & 0 & 300 & 0 & 114 & 177 & 197 & 227 & 244 & 273 & 306 & 344 & 344 & 477 & 478 & 546 \\ 0.60 & 0 & 48 & 89 & 110 & 140 & 177 & 207 & 241 & 273 & 304 & 334 & 362 & 369 & 444 & 477 & 479 & 508 \\ \vec{\kappa}_1(z_1) & 0.00 & 0 & 0 & 1 & 23 & 71 & 131 & 194 & 255 & 314 & 370 & 423 & 372 & 157 & 562 & 6677 \\ 0.45 & 0 & 71 & 108 & 157 & 1215 & 277 & 335 & 389 & 439 & 448 & 530 & 571 & 608 & 644 & 676 & 776 & 769 \\ 0.45 & 0 & 71 & 108 & 177 & 227 & 277 & 325 & 370 & 412 & 452 & 489 & 519 & 546 & 570 & 576 & 569 \\ 0.45 & 0 & 70 & 101 & 144 & 196 & 247 & 277 & 342 & 374 & 374 & 489 & 519 & 546 & 570 & 576 & 596 & 6477 \\ 0.66 & 0 & 1 & 3 & 8 & 14 & 22 & 336 & 459 & 677 & 92 & 105 & 119 & 133 & 147 & 180 \\ 0.135 & 0 & 1 & 3 & 8 & 14 & 221 & 326 & 477 & 489 & 519 & 514 & 517 & 556 & 647 \\ 0.46 & 0 & 1 & 3 & 6 & 11 & 27 & 28 & 576 & 78 & 92 & 105 & 119 & 133 & 147 & 180 \\ 0.46 & 0 & 1 & 3 & 6 & 112 & 20 & 29 & 40 & 52 & 657 & 78 & 92 & 105 & 119 & 133 & 147 & 180 \\ 0.46 & 0 & 1 & 3 & 6 & 112 & 20 & 29 & 40 & 52 & 657 & 78 & 92 & 105 & 119 & 133 & 147 & 180 \\ 0.46 & 0 & 1 & 3 & 6 & 114 & 27 & 326 & 577 & 797 & 578 & 518 & 578 & 578 & 546 & 570 & 578 & 5$	$\bar{R}_1(F_i)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	2 37 36 21 35	17 60 61 50 55	45 87 81 75	78 118 114 110 99	111 149 141 137 123	143 178 168 163 147	174 206 193 187 171	203 232 217 210 193	231 257 240 231 213	257 281 262 251 232	281 302 282 269 250	304 323 301 286 267	325 342 319 302 283	345 360 335 317 297	363 376 350 331 310	403 412 384 360 338	434 441 411 384 361
$ \begin{array}{c} \bar{R}_{i}(I) \\ \bar{R}_{i}(I) \\ 0 & 0 \\ 0 $	$\bar{R}_{l}(y_{t})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	2 43 40 25 40	24 66 69 59 60	59 101 99 96 85	99 138 132 129 114	138 174 163 160 143	175 207 194 188 171	209 238 222 215 197	242 267 249 239 222	272 294 274 262 244	301 319 298 284 265	327 343 319 303 284	351 364 340 321 301	373 384 358 338 317	393 402 375 353 332	411 419 391 367 345	449 454 423 396 372	479 481 448 418 393
$ \begin{array}{c} \bar{\kappa}_1(r_i) & 0.00 & 0 & 1 & 23 & 71 & 131 & 194 & 255 & 314 & 370 & 423 & 472 & 519 & 562 & 602 & 639 & 672 & 743 \\ 0.15 & 0 & 71 & 108 & 159 & 216 & 277 & 335 & 389 & 486 & 530 & 571 & 608 & 644 & 676 & 705 & 769 \\ 0.45 & 0 & 43 & 108 & 171 & 227 & 277 & 325 & 370 & 412 & 452 & 489 & 523 & 555 & 584 & 611 & 642 & 670 & 572 & 667 \\ 0.60 & 0 & 70 & 101 & 144 & 171 & 227 & 277 & 325 & 370 & 412 & 452 & 489 & 519 & 546 & 570 & 592 & 657 \\ 0.60 & 0 & 70 & 101 & 144 & 124 & 274 & 297 & 742 & 344 & 148 & 442 & 457 & 489 & 519 & 546 & 570 & 592 & 657 \\ \hline \mu \bar{\kappa}_1(r_i) & 0.00 & 0 & 0 & 1 & 5 & 11 & 20 & 29 & 40 & 52 & 65 & 78 & 92 & 105 & 119 & 133 & 147 & 180 \\ 0.15 & 0 & 1 & 3 & 8 & 15 & 23 & 322 & 43 & 55 & 67 & 79 & 92 & 106 & 119 & 132 & 145 & 176 \\ 0.30 & 0 & 1 & 4 & 8 & 14 & 21 & 30 & 95 & 60 & 73 & 89 & 71 & 09 & 121 & 133 & 161 \\ 0.45 & 0 & 1 & 3 & 8 & 13 & 20 & 28 & 37 & 47 & 57 & 68 & 78 & 89 & 100 & 111 & 121 & 147 \\ 0.60 & 0 & 1 & 3 & 6 & 11 & 17 & 25 & 33 & 42 & 51 & 61 & 71 & 81 & 91 & 100 & 111 & 134 \\ \mu \bar{\kappa}_1(r_i) & 0.00 & 0 & 0 & 4 & 12 & 24 & 58 & 57 & 66 & 76 & 95 & 115 & 135 & 155 & 174 & 193 & 212 & 229 & 268 \\ 0.45 & 0 & 1 & 6 & 14 & 22 & 38 & 57 & 66 & 76 & 89 & 100 & 111 & 121 & 147 \\ 0.60 & 0 & 2 & 6 & 15 & 28 & 42 & 58 & 76 & 95 & 115 & 135 & 155 & 174 & 193 & 212 & 229 & 268 \\ 0.45 & 0 & 1 & 6 & 14 & 24 & 36 & 50 & 65 & 91 & 97 & 114 & 130 & 146 & 161 & 176 & 190 & 221 \\ 0.50 & 0 & 2 & 5 & 11 & 20 & 32 & 45 & 57 & 70 & 85 & 100 & 119 & 138 & 158 & 210 \\ 0.50 & 0 & 2 & 5 & 11 & 20 & 32 & 45 & 57 & 70 & 85 & 100 & 119 & 138 & 158 & 210 \\ 0.50 & 0 & 2 & 5 & 11 & 20 & 32 & 45 & 57 & 70 & 85 & 100 & 119 & 138 & 158 & 210 \\ 0.50 & 0 & 1 & 4 & 7 & 11 & 18 & 27 & 38 & 50 & 63 & 78 & 93 & 109 & 126 & 143 & 160 & 204 \\ \mu \bar{\kappa}_1(r_i) & 0.05 & 0 & 0 & 51 & 68 & 69 & 128 & 148 & 236 & 276 & 335 & 343 & 380 & 445 & 448 & 527 & 622 \\ 0.50 & 0 & 1 & 4 & 7 & 111 & 18 & 27 & 38 & 50 & 63 & 78 & 93 & 109 & 126 & 143 & 160 & 204 \\ \mu \bar{\kappa}_1(r_i) & 0.05 & 0 & 53 & 94 & 140 & 165 & 226 & 242 & 253 & 355 $	$\bar{R}_1(I_r)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	0 55 59 30 48	9 81 86 70 83	33 110 116 114 110	67 146 152 157 140	105 186 189 196 173	146 227 226 234 207	188 267 262 269 241	229 306 298 303 273	269 344 332 335 304	308 380 366 365 334	346 415 398 394 362	382 448 428 421 389	416 479 457 447 414	449 508 485 471 437	480 536 510 494 459	551 599 569 546 508	611 652 619 590 549
$ {}_{B}\bar{K}_{1}(F_{1}) = \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\bar{R}_1(z_t)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0 0	1 71 71 43 70	23 98 108 108 101	71 151 159 171 144	131 215 216 227 196	194 277 270 277 247	255 335 322 325 297	314 389 371 370 342	370 439 418 412 384	423 486 462 452 422	472 530 503 489 457	519 571 542 523 489	562 608 578 555 519	602 644 611 584 546	639 676 642 611 570	672 705 670 635 592	743 769 729 687 637	798 817 774 726 671
$ {}_{B}\bar{R}_{1}(y_{i}) = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$_{B}\vec{R}_{1}(F_{i})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	0 1 1 1 1	1 3 4 3 3	5 8 8 8 6	11 15 14 13 11	20 23 21 20 17	29 32 30 28 25	40 43 39 37 33	52 55 50 47 42	65 67 61 57 51	78 79 73 68 61	92 92 85 78 71	105 106 97 89 81	119 119 109 100 91	133 132 121 111 101	147 145 133 121 111	180 176 161 147 134	210 204 187 170 155
$ \begin{split} {}_{B}\bar{R}_{1}(I_{1}) & 0.00 & 0 & 0 & 0 & 1 & 5 & 10 & 17 & 27 & 38 & 52 & 66 & 83 & 100 & 119 & 138 & 158 & 210 \\ 0.15 & 0 & 1 & 3 & 6 & 11 & 19 & 28 & 40 & 54 & 69 & 86 & 104 & 122 & 141 & 160 & 180 & 231 \\ 0.45 & 0 & 1 & 3 & 9 & 16 & 24 & 34 & 45 & 57 & 70 & 85 & 102 & 119 & 136 & 154 & 173 & 221 \\ 0.60 & 0 & 1 & 4 & 7 & 11 & 18 & 27 & 38 & 50 & 63 & 78 & 93 & 109 & 126 & 143 & 160 & 204 \\ B^{\bar{R}_{1}(z_{i})} & 0.00 & 0 & 0 & 3 & 16 & 38 & 68 & 103 & 143 & 188 & 236 & 286 & 336 & 387 & 436 & 484 & 530 & 633 \\ 0.15 & 0 & 3 & 10 & 28 & 56 & 90 & 128 & 169 & 212 & 256 & 302 & 348 & 395 & 440 & 484 & 527 & 622 \\ 0.50 & 0 & 3 & 10 & 28 & 56 & 90 & 128 & 169 & 212 & 256 & 302 & 348 & 395 & 440 & 484 & 527 & 622 \\ 0.50 & 0 & 3 & 10 & 28 & 56 & 90 & 128 & 169 & 212 & 256 & 302 & 348 & 395 & 440 & 484 & 527 & 622 \\ 0.50 & 0 & 3 & 10 & 28 & 56 & 90 & 128 & 169 & 212 & 256 & 302 & 348 & 395 & 440 & 484 & 527 & 622 \\ 0.50 & 0 & 3 & 11 & 32 & 57 & 87 & 121 & 159 & 201 & 245 & 291 & 337 & 382 & 427 & 470 & 510 & 601 \\ 0.45 & 0 & 3 & 16 & 35 & 58 & 85 & 118 & 155 & 195 & 236 & 279 & 322 & 364 & 405 & 444 & 482 & 564 \\ 0.60 & 0 & 4 & 11 & 27 & 52 & 82 & 115 & 151 & 188 & 227 & 266 & 305 & 343 & 380 & 415 & 448 & 519 \\ \bar{R}_{1}^{\bar{I}}(F_{i}) & 0.00 & 0 & 8 & 52 & 106 & 157 & 203 & 244 & 282 & 315 & 378 & 400 & 421 & 439 & 455 & 471 & 501 \\ 0.45 & 0 & 29 & 67 & 110 & 150 & 188 & 222 & 254 & 283 & 309 & 333 & 355 & 374 & 391 & 407 & 421 & 450 \\ 0.60 & 0 & 44 & 70 & 100 & 133 & 167 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \bar{R}_{1}^{\bar{I}}(I_{i}) & 0.00 & 0 & 16 & 97 & 195 & 286 & 367 & 438 & 500 & 554 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 842 \\ 0.60 & 0 & 444 & 70 & 100 & 133 & 167 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \bar{R}_{1}^{\bar{I}}(I_{i}) & 0.00 & 0 & 0 & 166 & 97 & 195 & 286 & 367 & 438 & 500 & 554 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 842 \\ \bar{R}_{1}^{\bar{I}}(I_{i}) & 0.00 & 0 & 0 & 166 & 97 & 195 & 296 & 367 & 478 & 508 & 584 & 603 & 645 & 638 & 716 & $	$_{B}\bar{R}_{1}(y_{i})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	0 2 1 2	4665	12 15 14 14 11	24 28 25 24 20	39 42 38 36 32	56 58 53 50 45	74 76 70 65 59	94 95 87 81 74	115 115 106 97 89	136 135 124 114 104	157 155 142 130 119	178 174 160 146 134	198 193 178 161 148	218 212 194 176 161	236 229 210 190 174	277 268 246 221 202	311 300 275 246 224
$\bar{R}_{1}^{\vec{r}}(r_{i}) = \begin{bmatrix} 0 & 0 & 0 & 3 & 16 & 38 & 68 & 103 & 143 & 188 & 236 & 286 & 336 & 387 & 436 & 484 & 530 & 633 \\ 0 & 15 & 0 & 3 & 10 & 28 & 56 & 90 & 128 & 169 & 212 & 256 & 302 & 348 & 395 & 440 & 484 & 527 & 622 \\ 0 & 30 & 0 & 3 & 11 & 32 & 57 & 87 & 121 & 159 & 201 & 245 & 291 & 337 & 382 & 440 & 484 & 527 & 622 \\ 0 & 4 & 11 & 27 & 52 & 85 & 118 & 155 & 195 & 236 & 279 & 322 & 364 & 405 & 444 & 482 & 564 \\ 0 & 60 & 0 & 4 & 11 & 27 & 52 & 82 & 115 & 151 & 188 & 227 & 266 & 305 & 343 & 380 & 415 & 448 & 519 \\ \hline \bar{R}_{1}^{\vec{r}}(F_{i}) = \begin{bmatrix} 0 & 0 & 0 & 8 & 52 & 106 & 157 & 203 & 244 & 282 & 315 & 346 & 373 & 397 & 419 & 439 & 457 & 473 & 505 \\ 0 & 15 & 0 & 53 & 94 & 140 & 185 & 226 & 262 & 295 & 325 & 353 & 378 & 400 & 421 & 439 & 456 & 471 & 501 \\ 0 & 45 & 0 & 29 & 67 & 110 & 150 & 188 & 222 & 254 & 283 & 309 & 333 & 355 & 374 & 391 & 407 & 421 & 450 \\ 0 & 60 & 0 & 44 & 70 & 100 & 133 & 167 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 0 & 16 & 97 & 195 & 286 & 367 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 16 & 97 & 195 & 286 & 367 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 16 & 97 & 195 & 286 & 367 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 16 & 97 & 195 & 286 & 367 & 367 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 16 & 97 & 195 & 286 & 367 & 367 & 238 & 508 & 587 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 842 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 16 & 97 & 195 & 286 & 367 & 368 & 587 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 842 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 16 & 97 & 195 & 286 & 367 & 378 & 598 & 587 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 842 \\ \hline \bar{R}_{1}^{\vec{r}}(I_{i}) = \begin{bmatrix} 0 & 0 & 0 & 16 & 97 & 195 & 286 & 367 & 368 & 587 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 848 \\ \hline \bar{R}$	$_{B}\bar{R}_{1}(I_{i})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	0 1 2 1 1	0 3 3 4	1 6 7 9 7	5 11 13 16 11	10 19 21 24 18	17 28 30 34 27	27 40 42 45 38	38 54 55 57 50	52 69 70 70 63	66 86 85 85 78	83 104 102 100 93	100 122 119 116 109	119 141 136 132 126	138 160 154 149 143	158 180 173 166 160	210 231 221 212 204	264 283 270 258 247
$ \bar{R}_1^{f}(F_i) = \begin{bmatrix} 0 & 0 & 0 & 8 & 52 & 106 & 157 & 203 & 244 & 282 & 315 & 346 & 373 & 397 & 419 & 439 & 457 & 473 & 505 \\ 0 & 0 & 53 & 94 & 140 & 185 & 226 & 262 & 295 & 325 & 353 & 378 & 400 & 421 & 439 & 456 & 471 & 501 \\ 0 & 30 & 0 & 46 & 89 & 129 & 168 & 205 & 240 & 271 & 300 & 327 & 351 & 373 & 392 & 410 & 426 & 441 & 471 \\ 0 & 45 & 0 & 29 & 67 & 110 & 150 & 188 & 222 & 254 & 283 & 309 & 333 & 355 & 374 & 391 & 407 & 421 & 450 \\ 0 & 60 & 0 & 44 & 70 & 100 & 133 & 167 & 201 & 233 & 263 & 290 & 315 & 338 & 359 & 377 & 394 & 409 & 440 \\ \bar{R}_1^{f}(I_i) & 0 & 0 & 0 & 16 & 97 & 195 & 286 & 367 & 438 & 500 & 554 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 842 \\ 0 & 16 & 97 & 195 & 286 & 367 & 438 & 500 & 554 & 603 & 645 & 683 & 716 & 746 & 772 & 795 & 842 \\ \bar{R}_1^{f}(I_i) & 0 & 15 & 0 & 168 & 226 & 350 & 327 & 538 & 538 & 587 & 631 & 670 & 700 & 735 & 763 & 787 & 809 & 853 \\ \hline \end{tabular}$	$_{B}\vec{R}_{1}(z_{t})$	0.00 0.15 0.30 0.45 0.60	0 0 0 0	0 3 3 4	3 10 11 16 11	16 28 32 35 27	38 56 57 58 52	68 90 87 85 82	103 128 121 118 115	143 169 159 155 151	188 212 201 195 188	236 256 245 236 227	286 302 291 279 266	336 348 337 322 305	387 395 382 364 343	436 440 427 405 380	484 484 470 444 415	530 527 510 482 448	633 622 601 564 519	719 702 676 630 576
$ar{R}_1^{(I_i)}$ 0.00 0 16 97 195 286 367 438 500 554 603 645 683 716 746 772 795 842 0 15 0 106 184 269 350 421 483 538 587 631 670 704 735 763 787 809 853	$\bar{R}_1^f(F_r)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0 0	8 53 46 29 44	52 94 89 67 70	106 140 129 110 100	157 185 168 150 133	203 226 205 188 167	244 262 240 222 201	282 295 271 254 233	315 325 300 283 263	346 353 327 309 290	373 378 351 333 315	397 400 373 355 338	419 421 392 374 359	439 439 410 391 377	457 456 426 407 394	473 471 441 421 409	505 501 471 450 440	529 525 493 472 463
0.30 0.45 0.60 0.88 0.60 0.88 0.57 0.60 0.88 0.57 0.60 0.88 0.57	$\bar{R}_1^f(I_i)$	0.00 0.15 0.30 0.45 0.60	0 0 0 0 0	16 106 92 57 88	97 184 176 134 139	195 269 250 215 197	286 350 321 291 259	367 421 386 358 321	438 483 446 418 380	500 538 499 472 435	554 587 547 520 485	603 631 590 562 529	645 670 629 600 570	683 704 663 634 605	716 735 693 664 637	746 763 721 691 666	772 787 745 715 691	795 809 767 736 714	842 853 811 779 759	876 886 843 811 793

incidentally be noted that the following results hold when $\sigma_1^2 = 1$:

$\bar{R}(F_t) = \bar{R}_1(F_t),$	$\bar{R}(I_t) = \bar{R}_1(I_t),$
${}_{B}\bar{R}(F_{t})={}_{B}\bar{R}_{1}(F_{t}),$	${}_{B}\bar{R}(I_{t})={}_{B}\bar{R}_{1}(I_{t}),$
$\bar{R}^f(F_t) = \bar{R}^f_1(F_t),$	$\bar{R}^f(I_t) = \bar{R}^f_1(I_t).$

Further, for any σ_1^2

$$\bar{R}_1^f(y_t) = \bar{R}_1^f(F_t), \qquad \bar{R}_1^f(z_t) = \bar{R}_1^f(I_t).$$

Hence for a complete model for which $\sigma_1^2 = 1$, we need consider only ten of the normalized indices and hence these alone are given in Tables 2 and 3.

4. Test of the theoretical results

The theoretical results in Tables 2 and 3 were tested in the case of a few models of some crystal structures. In the case of each structure two models were chosen by introducing random Gaussian errors to the positions of the atoms in the true structure. All the models chosen were of the complete type (*i.e.* P = N and $\sigma_1^2 = 1$). Three of the structures chosen are centrosymmetric and three are non-centrosymmetric. The relevant details regarding the structures and the models chosen are given in Table 4. In the case of each structure the structure-factor magnitudes calculated using the coordinates of the atoms in the true structure were taken to represent their *observed* values. Using

 Table 4. Details of the structures and the models used for testing the theoretical results

				⟨ ∆r])(Å)
Structure	Asymmetric unit	Space group	Reference	Model 1	Model 2
(I)	C ₆ O ₆	ΡĪ	Kroon & Kanters (1973)	0.0459	0.1607
(II)	C ₁₇ O ₂	P2 ₁ /c	Geetha (personal communication)	0.0686	0.1371
(III)	$C_{12}N_2O_2$	Pbca	Lisgarten & Palmer (1980)	0.0846	0.1691
(IV)	$C_{16}N_6O_8$	<i>P</i> 1	Kistenmacher, Hunt & Marsh (1972)	0.0971	0.1924
(V)	C ₆ NO ₄	<i>P</i> 2 ₁	Low, Howe, Scrimgeour & Watt (1988)	0.0684	0.1368
(VI)	$C_{21}O_3N$	<i>P</i> 2 ₁ 2 ₁ 2 ₁	Sekar (personal communication)	0.0649	0.1298

Note: All the models are of the complete type (*i.e.* P = N, $\sigma_1^2 = 1$).

the coordinates of the atoms in a model, the structurefactor magnitudes of the three-dimensional reflections within the region $0 \le (\sin \theta)/\lambda \le 0.5 \text{ Å}^{-1}$ were calculated. From these two sets of structure-factor magnitudes the values of the various R indices for a particular model of a given structure were computed by using those reflections for which $y_N > 0.3$ ($=y_t$). The *R* values thus obtained for the various models of the centrosymmetric structures are summarized in Table 5. Similar results for non-centrosymmetric structures are given in Table 6. The average values of $\langle |\Delta \mathbf{r}| \rangle$ obtained from the overall values of the *R* indices for the various models are also given in Tables 5 and 6 along with the corresponding true values. A study of Tables 5 and 6 shows that the values of $\langle |\Delta \mathbf{r}| \rangle$ estimated by the present method closely agree with the corresponding actual values of $\langle |\Delta \mathbf{r}| \rangle$.

5. Concluding remarks

(i) It may be noted here that in the theoretical derivations the crystals were taken to be triclinic. However, from the good agreement between the theoretical and experimental values in other space groups (see Tables 4 to 6), it appears that the results in Tables 2 and 3 could also be used in space groups of higher symmetry. (ii) Since it is essential to know the true value of $\langle |\Delta \mathbf{r}| \rangle$ in order to verify the theoretical results, we have used only hypothetical structures in the tests

Table 5. Test of the theoretical results for two different models: centrosymmetric cases

		Struc	cture I			Structure II				Struct	ure III	
-	M	odel 1	M	odel 2	M	odel 1	M	odel 2	M	odel 1	M	odel 2
R index	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$
$\bar{R}_1(F_i)$	9.3	0.0468	29.8	0.1636	15-1	0.0759	28.3	0.1535	17.7	0.0900	32.1	0.1800
$\bar{R}_1(y_t)$	10.7	0.0463	33.7	0.1626	16.7	0.0723	31.1	0.1471	19.6	0.0859	35-2	0.1723
$_{B}\bar{R}_{1}(F_{t})$	0.8	0.0450	8.5	0.1633	2.2	0.0760	7.7	0.1538	2.9	0.0883	9.5	0.1744
$_{B}\bar{R}_{1}(y_{t})$	1.4	0.0443	13.6	0.1563	3.3	0.0689	11.4	0.1400	4.7	0.0838	14.9	0.1659
$\bar{R}_1^f(F_t)$	15.2	0.0466	46.4	0.1770	23.9	0.0747	43.8	0.1612	28.1	0.0896	49.1	0.1947
$\bar{R}_1(I_t)$	11.5	0.0477	39.3	0.1670	19.3	0.0780	36.5	0.1535	21.0	0.0850	39.2	0.1665
$\tilde{R}_1(z_t)$	15.9	0.0453	51.0	0.1281	25.4	0.0712	47.1	0.1437	29.4	0.0836	53.4	0.1676
$_{B}\bar{R}_{1}(I_{t})$	0.6	0.0457	8.7	0.1711	1.8	0.0756	6.8	0.1488	1.2	0.0622	4.5	0.1186
$_{B}\bar{R}_{1}(z_{t})$	2.1	0.0389	23.2	0.1491	5.7	0.0671	19.8	0.1365	7.7	0.0811	27.0	0.1629
$\bar{R}_1^f(I_t)$	28.8	0.0465	76.8	0.1745	43.6	0.0749	73.1	0.1589	50 ∙0	0.0893	80.5	0.1914
$\langle \Delta \mathbf{r} \rangle_{est}$		0.0453		0.1643		0.0735		0.1497		0.0839		0.1694
$\left<\left \Delta \mathbf{r}\right \right>_{\mathrm{true}}$		0.0459		0.1607		0.0686		0.1371		0.0846		0.1691

Note: R is in % and $\langle |\Delta \mathbf{r}| \rangle$ is in Å. $\langle |\Delta \mathbf{r}| \rangle_{est}$ is the average value in the respective columns.

Table 6. Test of the theoretical results for two different models: non-centrosymmetric cases

		Struct	ture IV			Struc	ture V			Struc	ture VI	
	М	odel 1	M	odel 2	M	odel 1	M	odel 2	M	odel 1	M	odel 2
R index	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$	Ŕ	$\langle \Delta \mathbf{r} \rangle$
$\tilde{R}_1(F_t)$	14.9	0.1059	27.6	0.2140	9.9	0.0689	18.5	0.1336	10.5	0.0733	20.5	0.1500
$\bar{R}_1(y_t)$	17.0	0.1045	30.7	0.2086	11.5	0.0697	21.0	0.1314	11.6	0.0703	22.7	0.1437
$_{B}\bar{R}_{1}(F_{t})$	2.2	0.1022	8.0	0.2117	1.0	0.0667	3.4	0.1289	1.1	0.0700	4.1	0.1436
$_{B}\bar{R}_{1}(y_{t})$	3.9	0.1013	12.9	0.2056	1.9	0.0691	6.0	0.1282	1.7	0.0655	6.5	0.1341
$\bar{R}_1^f(F_t)$	21.2	0.1040	35.0	0.1992	14.7	0.0692	25.3	0.1284	14.7	0.0692	28.4	0.1490
$\overline{R}_{1}(I_{t})$	20.2	0.1070	40 ∙0	0.2213	13.0	0.0678	25.8	0.1378	14.2	0.0744	28.0	0.1200
$\bar{R}_1(z_i)$	28.2	0.1046	53.2	0.2149	18.7	0.0698	35.3	0.1327	18.8	0.0702	36.9	0.1392
$_{B}\overline{R}_{1}(I_{t})$	2.1	0.1000	9.1	0.2071	0.8	0.0633	3.2	0.1233	0.8	0.0633	3.2	0.1233
$_{B}\vec{R}_{1}(z_{t})$	8.4	0.0980	30.9	0.2078	3.7	0.0640	13.1	0.1253	3.3	0.0608	13.0	0.1247
$\bar{R}_1^f(I_t)$	39.7	0.1037	63.3	0.2024	28.1	0.0687	46.7	0.1279	28.6	0.0701	52.1	0.1492
$\langle \Delta \mathbf{r} \rangle_{est}$		0.1031		0.2092		0.0677		0.1297		0.0687		0.1407
$\langle \Delta \mathbf{r} \rangle_{true}$		0.0971		0.1924		0.0684		0.1368		0.0649		0.1298

Note: See note to Table 5 for details.

described in § 4. In such hypothetical cases, $|F_N|$ will be free from errors of observation. However, when one uses the observed overall value of an R index for finding $\langle |\Delta \mathbf{r}| \rangle$, one must remember that the experimental errors in $|F_{obs}|$ would also contribute to the overall value of the R index. Owing to this one has to note the following two points in estimating $\langle |\Delta \mathbf{r}| \rangle$ in actual cases. (a) Since the overall values of Boothtype indices for a complete model (*i.e.* P = N) are generally small, they would not be suitable for estimating the mean coordinate error of a complete model. (b) The $\langle |\Delta \mathbf{r}| \rangle$ value obtained for a model from the observed overall values of R indices may be somewhat overestimated.

We thank Sekar and Geetha for providing structural data for two of the structures used in the test of the theoretical results. One of us (NE) thanks the University of Madras for financial assistance.

References

KISTENMACHER, J. J., HUNT, D. J. & MARSH, R. E. (1972). Acta Cryst. B28, 3352-3361.

- KROON, J. & KANTERS, J. A. (1973). Acta Cryst. B29, 1278-1283.
- LISGARTEN, J. N. & PALMER, J. N. (1980). Acta Cryst. B36, 2345-2349.
- Low, J. N., Howe, R. E., SCRIMGEOUR, C. M. & WATT, D. W. (1988). Acta Cryst. C44, 1762-1764.

LUZZATI, V. (1952). Acta Cryst. 5, 802-810.

- PARTHASARATHY, S. (1987). Direct Methods: Macromolecular Crystallography and Crystallographic Statistics, edited by H. SCHENK, A. J. C. WILSON & S. PARTHASARATHY, pp. 93-107. Singapore: World Scientific.
- PARTHASARATHY, S. & PARTHASARATHI, V. (1975). Acta Cryst. A31, 178-181.
- PARTHASARATHY, S. & VELMURUGAN, D. (1981). Acta Cryst. A37, 472-480.
- PONNUSWAMY, M. N. & PARTHASARATHY, S. (1977). Acta Cryst. A33, 838-844.
- SRINIVASAN, R. & PARTHASARATHY, S. (1976). Some Statistical Applications in X-ray Crystallography. New York: Pergamon.
- SRINIVASAN, R. & RAMACHANDRAN, G. N. (1966). Acta Cryst. 20, 570-571.
- SWAMINATHAN, P. & SRINIVASAN, R. (1975). Acta Cryst. A31, 310-318.
- VELMURUGAN, D. & PARTHASARATHY, S. (1981a). Acta Cryst. A37, 480-485.
- VELMURUGAN, D. & PARTHASARATHY, S. (1981b). Pramana, 17, 499-508.

have used this distribution to obtain the local value of the normalized Booth-type index ${}_{B}R_{1}(y_{N})$ (see

Table 1 for a definition) as a function of a parameter

D [see equation (12) for a definiton of D]. A number

of other R indices which are more efficient in the

refinement stage are available in the literature [see

Elango & Parthasarathy (1990) for their definitions

and notation] and it is worthwhile to obtain the

theoretical expressions for their overall values for the present situation. From a practical point of view, the

overall value finds more general use than the local values of R indices. Further, it is essential to take

into account the effect of data truncation due to

unobserved reflections into the theoretical treatment.

We shall therefore derive the theoretical expressions

for the overall values of different types of R indices

and use them to obtain the overall values of R indices

directly as a function of $\langle |\Delta \mathbf{r}| \rangle$ in the form of a table.

In this paper we shall follow the notation and nomen-

Acta Cryst. (1990). A46, 502-507

The Minimum Probable Values of Residuals for the Best Centrosymmetric Model of an Approximately Centrosymmetric Crystal

BY N. ELANGO AND S. PARTHASARATHY

Department of Crystallography and Biophysics,* University of Madras, Guindy Campus, Madras 600 025, India

(Received 19 December 1989; accepted 24 January 1990)

Abstract

Theoretically expected overall values of ten types of normalized R indices are derived for the best centrosymmetric model of a non-centrosymmetric crystal which is approximately centrosymmetric as a function of the mean coordinate error $\langle |\Delta \mathbf{r}| \rangle$ of the best centrosymmetric model of the non-centrosymmetric crystal. The results obtained were tested in a few cases.

1. Introduction

The joint probability density function of the normalized structure-factor magnitude y_N of a non-centrosymmetric crystal which is approximately centrosymmetric and that (*i.e.* y_N^c) calculated for the best centrosymmetric model (see later for an explanation of this nomenclature) has been worked out by Swaminathan & Srinivasan (1975) (SS, 1975). They

0108-7673/90/060502-06\$03.00

clature used by Elango & Parthasarathy (1990). We © 1990 International Union of Crystallography

^{*} Contribution No. 750.